Comparison of three retrievals of COSMIC GPS radio occultation results in the tropical upper troposphere and lower stratosphere
نویسنده
چکیده
Combining geometrical optics (GO) and wave optics (WO), the COSMIC data analysis and archive center (CDAAC) retrieved two sets of dry atmosphere temperatures (T) from COSMIC GPS radio occultation (GPS-RO), which are called atmPrf2010 and atmPrf2013. In atmPrf2010, the sewing height between WO and GO varies between 10 and 20 km, but is fixed at 20 km for atmPrf2013. The height resolution of the atmPrf2010 depends on the sewing height, while the T profiles by atmPrf2013 are smoothed over 500 m. We also derived T by applying WO throughout the troposphere and the stratosphere up to a 30-km altitude, which is called rishfsi2013. The three retrievals have different characteristics in the height resolution around the tropopause. Therefore, we aim to examine a possible discrepancy in the statistical results of the cold-point tropopause (CPT) and the lapse rate tropopause (LRT) among the three datasets, conducting their inter-comparisons as well as the comparison between GPS-RO and the simultaneous radiosonde dataset. We investigate the T variations in the upper troposphere and lower stratosphere (UTLS) over the tropics from October 1, 2011, to March 31, 2012, when radiosonde soundings were conducted as the CINDY-DYNAMO 2011 campaign. The mean T profiles are consistent between atmPrf2010 and atmPrf2013, but rishfsi2013 results are colder (warmer) than the CDAAC retrievals below (above) the tropopause. The mean T difference between atmPrf2013 and atmPrf2010 is 0.17 K at the cold-point tropopause (CPT) and −0.38 K at the lapse rate tropopause (LRT). On the other hand, rishfsi2013 shows a colder T at CPT by −0.77 and −0.59 K relative to atmPrf2013 and atmPrf2010, respectively, and the warmer T by 0.60 and 0.20 Kd at LRT. During CINDY-DYNAMO, we found 134 radiosonde soundings that coincide with GPS-RO within ±3 h and are collocated within 200 km from GPS-RO. The mean T difference at CPT from the radiosondes is 0.32, 0.49 and −0.24 K for atmPrf2010, atmPrf2013 and rishfsi2013, respectively. Both atmPrf2013 and atmPrf2010 have a positive bias at CPT, while rishfsi2013 has a negative one. Similar comparisons at LRT are −0.45, −0.69 and −0.41 K, respectively, showing a negative bias for all GPS-RO retrievals. The results show that rishfsi2013 is consistent with the retrievals at CDAAC and the radiosondes. Due to its good height resolution, rishfsi2013 is useful for studies on mesoscale T perturbations in the UTLS.
منابع مشابه
The vertical and spatial structure of ENSO in the upper troposphere and lower stratosphere from GPS radio occultation measurements
[1] The vertical and spatial structure of the atmospheric El Niño-Southern Oscillation (ENSO) signal is investigated using radio occultation (RO) data from August 2006 to December 2010. Due to their high vertical resolution and global coverage, RO data are well suited to describe the full 3-dimensional ENSO structure in the troposphere and lower stratosphere. We find that interannual temperatur...
متن کاملGPS Occultation Measurements with GPS/MET and CHAMP
First results from the GPS radio occultation experiment aboard the German CHAMP satellite are presented. The agreement between observed temperature profiles in the upper troposphere and the lower stratosphere and temperature profiles obtained from meteorological analyses is found to be below 1 K. The data processing and analysis system (operated by GeoForschungsZentrum Potsdam) has been success...
متن کاملGPS profiling of the lower troposphere from space: Inversion and demodulation of the open-loop radio occultation signals
[1] Global Positioning System (GPS) radio occultation (RO) is a space-borne remote sensing technique providing accurate, all-weather, high vertical resolution atmospheric parameters, including pressure, temperature and humidity in the troposphere and stratosphere. In the moist lower troposphere (LT) RO encounters known problem related to the phase-locked loop (PLL) tracking technique applied in...
متن کاملOn the Signatures of Equatorial and Extratropical Wave Forcing in Tropical Tropopause Layer Temperatures
Temperatures in the tropical tropopause layer (TTL) play an important role in stratosphere–troposphere exchange and in the formation and maintenance of thin cirrus clouds. Many previous studies have examined the contributions of extratropical and equatorial waves to the TTL using coarse-vertical-resolution satellite and reanalysis data. In this study, the authors provide new insight into the ro...
متن کاملFirst results from the GPS atmosphere sounding experiment TOR aboard the TerraSAR-X satellite
GPS radio occultation events observed between 24 July and 17 November 2008 by the IGOR occultation receiver aboard the TerraSAR-X satellite are processed and analyzed. The comparison of 15 327 refractivity profiles with collocated ECMWF data yield a mean bias between zero and −0.30 % at altitudes between 5 and 30 km. Standard deviations decrease from about 1.4 % at 5 km to about 0.6 % at 10 km ...
متن کامل